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Correlations of eigenfunctions in disordered systems

Ya. M. Blanter*? and A. D. Mirlin*?
YInstitut fir Theorie der Kondensierten Materie, Universitéarlsruhe, 76128 Karlsruhe, Germany
2Department of Theoretical Physics, Moscow Institute for Steel and Alloys, Leninskii Prospekt 4, 117936 Moscow, Russia
3Petersburg Nuclear Physics Institute, 188350 Gatchina, St. Petersburg, Russia
(Received 22 April 1996

Correlations of eigenfunctiong] ¢, (r1)|?#(r2)|?), in a disordered system are investigated. We derive
general formulas expressing these correlation functions in terms of the supermatoxlel. In the particular
case of the weak localization regime we find that the correlations of the same eigenfunction are proportional to
g~ ! for large distances, while the correlations of two different eigenfunctions cross ovegfrbimehavior for
r,=r, to g2 behavior for|r,—r,|>I, with g and| being the dimensionless conductance and the mean free
path, respectively.S1063-651X97)12805-1

PACS numbgs): 05.45:+b, 73.23.Hk, 73.20.Dx

Statistics of eigenfunction fluctuations in disordered andy,q HamiltoniarI3|0= |:|O+ U(r) in a particular disorder con-
chaotic systems have attracted research interest recently. T SurationU(r) g being the Hamiltonian of the free par
. . - . - . - y O -
fluctuat_lons of eigenfunction amplitudes dete'rmlne' statistic icle. Further we define the eigenfunction correlators
properties of conductance peaks and level widths in quantum
dots in the Coulomb blockade regirh&-5], and can be di-

—_ 2
rectly measured in the microwave cavity experimdigtg]. ~ @(11:12,€) = ([¢(r1) ¢u(r2)[*)e

On the theoretical side, the recent progress is based on ap-

plication of the supersymmetry method to the problem of <2 ‘zpk(rl)zpk(rz) 25(e— ek)>
eigenfunction statisticg3,2]. It was found that the distribu- — K

tion of eigenfunction amplitudes is in the leadirigero- 2 s '
mode approximation correctly described by formulas of the k (e~ e

random matrix theoryRMT). Deviations from the RMT pre-

dictions were studied in Reff8—10]. Correlations of ampli-

tudes of an eigenfunction in two different spatial points wereb(1.12,€,)

considered in Refl11] on the level of zero-mode approxi- —(|r) i (r) |2 k=]
mation; the latter was showfil2] to be equivalent to the e

RMT-like assumption of the Gaussian fluctuations of wave 2
functions. 2 | I ih(r) 23~ ) e+ 0—e)
All results mentioned above concern fluctuations of the = . 2
sameeigenfunction. In the present paper we study correla- <2 S(e—ep) 5(6+w_6|)>
tions of amplitudes of twdlifferenteigenfunctions. We de- k=

rive general expressions in terms of the supermatrix
model, valid for arbitrary diffusive(or classically chaotic ~ One can then rewrite Eql) as
system, and then apply them to the weak localization regime.

In order to evaluate the correlations of the wave functions _ -1
A r yr 1 - r ,r ) A 5
we use a technique similar to that of REE3]. Namely, we (.12, €,0)= a1 I2,€) (@)
consider a quantity +B(ry,r2,6,0)A"?R(w)—v?,  (3)
A(r1,12, € 0)= < 2 | n(r1) (1)) whereA is the mean level spacing,= (»V) ~%, with V and
k. v being the system volume and the density of states, respec-
tively. Here we have introduced the two-level correlation
X 8(e—€)S(e+ w—e|)> function
—( S 1wlr) 28— €) R(w)=A2( D S(e—e€)d(e+w—g)). (4
k lﬂk( 1 (6 €k k=1

><< 2 |¢.(r2)|25(e+w—e,)>. 1) We Woulq like to stress that' weo notassume any decou-
T pling of eigenfunction and eigenvalue correlations.

On the other hand, the quantity) can be written in terms
Here the angular brackets denote the impurity average. Wef the Green'’s functions in the coordinate-frequency repre-
have introduced the eigenstatggr) and eigenvalues, of  sentation
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A(rl,rz,E,(J)):(2772)_1Re{<GR(r1,r1,G)GA(rz,r2,6+ (,U)>
—(GR(ry,11,©))(GA(rp, 15,6+ )} (5)

The expressiori5) can be directly calculated with the use of
the supersymmetry technig{ie4—16. We concentrate in the
sequel on the case of broken time-reversal symmietnitary
ensemblg generalization to the other ensembles is straight
forward. After the standard manipulations we get

A(ry,ra,€,0)=—(272) 'Re[(goH(r1,r1)955(r2.2)
+ géﬁ(rl ,rz)gﬁt(rz,rl))p

—(95b(r1.r1))e(98a(r2.12))e}- (6)

Here (- - - ) denotes the averaging with the action of the
supermatrixc model F[Q]:

(- '>F=f DQ(---)exp(—F[Q]),

TV
F[Q]:—TJ dr StfD(VQ)2+2i(w+i0)AQ], (7)

whereD is the diffusion coefficientQ=T AT is a 4x 4
supermatrix A =diag(1,1-1,— 1), andT belongs to the su-
percoset space(1,12)/U(1|1)xU(1|1). The symbol Str
denotes the supertrace defined as BEBteBi—Bif
+BZ2—B??. The upper matrix indices correspond to the
retarded-advanced decomposition, while the lower indice
denote the boson-fermion one. The Green'’s funcgiom Eq.
(6) is the solution to the matrix equation

g(r,r’)y=6(r—r").

-
(8)

Expressing these functions through the matriQeand tak-
ing into account Eq(3), we arrive at the following equation
valid in an arbitrary diffusive system:

)
et ;—HO) —5 (@) A+Q/2r

a(rlvr216) B(rl7r27€1w)
A A2
—(mv)?Re(Qph(r1) Qha(r2))e
—[Im GR(r;—12)1?Re(Qi5(r1) Qpa(ro))e + (v)?,
9)

with GR being the impurity averaged retarded Green’s func
tion. In particular, in the case of the 2D and 3D system
GR is given by

2

27 Sw)+ R(w)

/2
—ivf doexd (ipgr —r/2l)cosd], 2D
GR(r): —7l2

—av(per) texdiper—r/21], 3D,

wherel is the mean free path. When deriving the second

term on the right-hand sidghs) of Eq. (9), we approximated
the field Q(r) in Eq. (8) by a constant matrixQ(ry). This
approximation works both for=|r;—r,|<| (due to slow
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variation of theQ field) and forr>1| [when the Green's
function g(rq,r,) is exponentially small anyway, and the
second term on the rhs of E(P) is negligibly small.

The key point making further progress possible is that the
term containing the single eigenfunction correlations on the
Ihs of Eq.(9) is proportional tod(w), whereas the one de-
pending on the correlations of two different eigenfunctions is
Tegular atw=0. Thus, separation of the expression on the
rhs of Eq.(9) into the singulafproportional toé(w)] and
regular parts allows one to obtain the quantiti€s, ,r,) and
B(ry,r2, o).

Now we turn to the case of a metallic system in the weak
localization regime. The corresponding small parameter is
given by Eq.(19) below. For further purposes, we introduce
the functions

fa(ry,rp) =11%(ry,r5),

fz(f11f2)=(2V)_1f dr{IT2(r,ry) +T1%(r,12)],
(10

f3=V*2f drdr'TI%(r,r"),

f4(r1,r2)=V*1f drII(r,r)II(r,rp).

Here the diffusion propagatdt is the solution to the diffu-

sion equation
s

—DV2II(ry,rp)=(mv) Y o(r;—ry)) =V (11

with appropriate boundary conditions. We obtain

H(rl,r2)=<w>-1§ (DG?) " Lpy(r1) dg(ra),  (12)

with ¢, being the eigenfunction of the diffusion operator
corresponding to the eigenvallg?, g#0. The level corre-
lation function has the formi17]

R(w)=1—s"2sir’s+ f5sin’s+0(g 9, (13

where a dimensionless parameter ww/A is introduced.
The first two terms in Eq(13) are given by RMT, while the
third one is the correction of ordey 2 due to the diffusion
modes. Hergg=2wE_./A is the dimensionless conductance,
with E; being the Thouless energy.

The o model correlation functiong Qib(r)Q22(r,))e
and (QL2(r1)Q2k(r,))r can be calculated for relatively low

frequencieso<E. with the use of a general method devel-
oped in Refs[17,9], which allows one to take into account
spatial variations of the fiel. The results are obtained in
form of expansions iy~ 1. First, we restrict ourselves to the
terms of orderg™!. Then, the result for the first correlator
reads as

expis)sins

(QE(r)Q5E(r2))e= —1=21 = g2

—2i

II(rq,rp). (14

s+i0
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The first two terms in Eq(14) represent the result of the Eq. (9), we obtain the following result for the autocorrela-
so-called zero-mode approximatigt4], which takes into tions of the same eigenfunction:

account only the spatially constant configurations of the field

Q(r), so that the functional integral ov&Q(r) is reduced

to an integral over a single matri@. The last term is the V(| 4(ry) ¢(r2)|?) = 1=Ka(N[1+TI(ry,r) ]+ TI(r, 1),
correction of orderg~. An analogous calculation for the

second correlator yieldd 3] (16)

and for the correlation of amplitudes of two different eigen-

12 21 _ i . exp(is)sins functions
<be(r1)be(r2)>F_ 2[S+i0+ 1+i (S+i0)2
2 2y _q—
XTI(rq,fo) } . (15) V| g(r) i (r2)] Yew— 1=Kg(N)II(ry,ry), k¢|-(17)

Now, separating regular and singular parts on the rhs oHere the functiorky(r) is defined as
|
1, 2D, per<l

ky(r)=(mv) " 2[IMGR(r)]2=e"'{ 2(mper) ‘cod(per —m/4), 2D, pgr>1
(per) ~2sirfper,  3D.
|
In particular, forr;=r, we have terms proportional tog~2. We find that the correlator

122y gets the following correction:
V| D 0)|2) e = 1= S+ (1 STI(E, ). (18 (QuuQbir 9 k

11~22\ _ H
Note that the resultL6) for r;=r, is the inverse participation & QppQpb)r= —f1+2f4+exp2is)f,

ratio previously obtained in Ref9], while that for arbitrary exp(2is)

spatial separation was found in the zero-mode approximation =2 ————(fy,—f3)

(g==) in Ref.[11]. st+i0
Equations(17) and (18) show that the correlations be- exp2is)—1

tween different eigenfunctions are relatively small in the —W(fl—4f2+3f3—2f4).
weak disorder regime. Indeed, they are proportional to the
small parametelI(r,r), which is equal in the case of 2D (21

geometry to [ is the size of the system
Consequently, we obtain the following results for the corre-

I(r,r)=(mg) *InL/l, 2D. (19 Jations of different k#1) eigenfunctions at>1:

For a quasi-1D wire or strip of the length L

o1 r V2<|¢k(r1)¢|(r2)|2)€’w—1=§(f1—f3—2f4)+2(f2—f3)

II(r,r)y=—=+B, —” Osr<L, (20

g6 L ><(sinzs SiHZS)
whereB,(x) =x%—x+ 1/6 is the Bernoulli polynomial18]. s° 2s
The correlations are enhanced by disorder; when the system sires| 1
approaches the strong localization regime, the relative mag- X|1-— ) i (22
nitude of correlationslI(r,r), becomes the quantity of order S
of unity.

An inspection of Eqs(16) and(17) shows that while the As it should be expected, the double integral over both co-
correlations of amplitude of the same wave function surviveordinates of this correlation function is equal to zero. This
for the large separation between the points;|, and are property is just the normalization condition and should hold
proportional tog~?, the correlations of two different wave in arbitrary order of expansion ig~ 2.
functions decay exponentially for the distances larger than The quantities,, f3, andf, are proportional t@~?, with
the mean free path. This is, however, an artifact of the some prefactors of order unift7]. On the other hand,; in
g~ ! approximation, and the investigation of the correspond2D and 3D geometry depends essentially on the distance
ing tails requires the extension of the above calculation to the=|r,—r,|. In particular, forl <r<L we find



—21 2=, 2D
) (m@)” " 1’
f1(ry,ro) =11%(ry,rp)~ 1
@7z 3P

Thus, forl <r<L, the contributions proportional th, domi-
nate in Eq.(22), and we get

1

V(| (r) ()3, — 1= EHZ(rl,rz), k#1. (23
On the other hand, for the case of quasi-1D geoméisy
well as in 2D and 3D for ~L), all quantitiesf,, f,, f5, and
f, are of order of 1g2. Thus, the correlatof22) acquires a
nontrivial frequency dependence on a scale A described
by the second term on the rhs of E82). In particular, in the
quasi-1D case

el

(24)

whereB,(x) =x*— 2x3+x?—1/30. Therefore, we find a cou-

pling of the eigenfunction and eigenvalue statistics.

Another correlation function, generally used for the cal-

culation of the linear response of the system,

7(r11r21€1w):<¢:(r1) llll(rl)‘//k(rZ) I/’r(r2)>e,w 3

can be calculated in a similar wagf. [13]). Starting from
the quantity

k#l,

B(rl,rz,e,w)=<; e (r) (o) gadra) i (rp)

X d(e— ek)5(6+w—e|)>
—<2k ¢:<rl>wk<r2>5<e—ek>>

><<2| Y(ro) i (rz) 8(e+ w—6|)>, (29

and repeating the derivation that led us to £®9), we get
another identity:

2 a(rliAr21€) w +’)/( 11;216 (1))
—(7v)?Re{(Qpi(r) Qba(12))e
+ka(N{Qpb(r)Qaa(r1) e —Ka(r)},

Taking into account Eq914) and (15), and separating the
rhs into the regular and singular parts, we recover [#6)
and obtain

2

R(w )}

(26)
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V(e (r) (1) Y(r) 4 (12)) e o= Ka(1) +I1(rq,15),

k#1. (27)

As was mentioned, the above derivation is valid for
w<<E.. In order to obtain the results in the range=E. one
can calculate the model correlation functions entering Egs.
(9) and (26) by means of the perturbation thedr{9]. We
find then fork+#1

VZ([gnr) n(ra)|? e =1+ Re[ Kg(r)IL,(ry,rp)

1 5
+ 2| IT5(rq,rp)

—%f drdr’Hfj(r,r’)”,

VA (r) (1) Yar) i (12) e o= Ka(r) + R, (11,15),
(29)

wherell ,(rq,r,) is the finite-frequency diffusion propagator

=(mv)”~ 1§q: M, (29)

Hm(rler

and the summation in E¢29) now includesg=0.

Finally, we discuss the relation between our results and
experiments carried out on quantum dots in the Coulomb
blockade regime. Our theory predicts only weakII(r,r)]
correlations of the amplitudes of different wave functions in
the same point, which implies weak correlations of neighbor-
ing conductance peak heights. Indeed, this is in agreement
with the experiment$20,4]. On the other hand, strong cor-
relations of amplitudes were observed receffij In prin-
ciple, one could imagine that the dot was far from the uni-
versal(RMT) regime, so that the parametdr(r,r) was not
small. However, this would be in contradiction with the fact
that the total distribution of peak heights in Rig] was well
described by the RMT formuldd], since the corrections to
the distribution of| #%(r)| (and consequently to that of peak
heightg are proportional to the same paramelk(r,r) [9].
Possibly, variation of the peak heights in the experimé&nt
may have another source on top of the fluctuations of the
eigenfunctions.
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