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Correlations of eigenfunctions in disordered systems
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Correlations of eigenfunctions,^uck(r1)u2uc l(r2)u2&, in a disordered system are investigated. We derive
general formulas expressing these correlation functions in terms of the supermatrixs model. In the particular
case of the weak localization regime we find that the correlations of the same eigenfunction are proportional to
g21 for large distances, while the correlations of two different eigenfunctions cross over fromg21 behavior for
r15r2 to g

22 behavior forur12r2u@ l , with g and l being the dimensionless conductance and the mean free
path, respectively.@S1063-651X~97!12805-7#

PACS number~s!: 05.45.1b, 73.23.Hk, 73.20.Dx
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Statistics of eigenfunction fluctuations in disordered a
chaotic systems have attracted research interest recently
fluctuations of eigenfunction amplitudes determine statist
properties of conductance peaks and level widths in quan
dots in the Coulomb blockade regime@1–5#, and can be di-
rectly measured in the microwave cavity experiments@6,7#.
On the theoretical side, the recent progress is based on
plication of the supersymmetry method to the problem
eigenfunction statistics@8,2#. It was found that the distribu
tion of eigenfunction amplitudes is in the leading~zero-
mode! approximation correctly described by formulas of t
random matrix theory~RMT!. Deviations from the RMT pre-
dictions were studied in Refs.@8–10#. Correlations of ampli-
tudes of an eigenfunction in two different spatial points we
considered in Ref.@11# on the level of zero-mode approx
mation; the latter was shown@12# to be equivalent to the
RMT-like assumption of the Gaussian fluctuations of wa
functions.

All results mentioned above concern fluctuations of
sameeigenfunction. In the present paper we study corre
tions of amplitudes of twodifferenteigenfunctions. We de
rive general expressions in terms of the supermatrixs
model, valid for arbitrary diffusive~or classically chaotic!
system, and then apply them to the weak localization regi

In order to evaluate the correlations of the wave functio
we use a technique similar to that of Ref.@13#. Namely, we
consider a quantity

A~r1 ,r2 ,e,v!5K (
k,l

uck~r1!c l~r2!u2

3d~e2ek!d~e1v2e l !L
2K (

k
uck~r1!u2d~e2ek!L

3K (
l

uc l~r2!u2d~e1v2e l !L . ~1!

Here the angular brackets denote the impurity average.
have introduced the eigenstatesck(r) and eigenvaluesek of
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the HamiltonianĤ05Ĥ01U(r) in a particular disorder con
figurationU(r ), Ĥ0 being the Hamiltonian of the free par
ticle. Further we define the eigenfunction correlators

a~r1 ,r2 ,e!5^uck~r1!ck~r2!u2&e

[
K (

k
Uck~r1!ck~r2!U2d~e2ek!L

K (
k

d~e2ek!L ,

b~r1 ,r2 ,e,v!

5^uck~r1!c l~r2!u2&e,v, kÞ l

[
K (
kÞ l

Uck~r1!c l~r2!U2d~e2ek!d~e1v2e l !L
K (
kÞ l

d~e2ek!d~e1v2e l !L . ~2!

One can then rewrite Eq.~1! as

A~r1 ,r2 ,e,v!5a~r1 ,r2 ,e!D21d~v!

1b~r1 ,r2 ,e,v!D22R~v!2n2, ~3!

whereD is the mean level spacing,D5(nV)21, with V and
n being the system volume and the density of states, res
tively. Here we have introduced the two-level correlati
function

R~v!5D2K (
kÞ l

d~e2ek!d~e1v2e l !L . ~4!

We would like to stress that wedo notassume any decou
pling of eigenfunction and eigenvalue correlations.

On the other hand, the quantity~1! can be written in terms
of the Green’s functions in the coordinate-frequency rep
sentation
6514 © 1997 The American Physical Society
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55 6515CORRELATIONS OF EIGENFUNCTIONS IN . . .
A~r1 ,r2 ,e,v!5~2p2!21Re$^GR~r1 ,r1 ,e!GA~r2 ,r2 ,e1v!&

2^GR~r1 ,r1 ,e!&^GA~r2 ,r2 ,e1v!&%. ~5!

The expression~5! can be directly calculated with the use
the supersymmetry technique@14–16#. We concentrate in the
sequel on the case of broken time-reversal symmetry~unitary
ensemble!; generalization to the other ensembles is straig
forward. After the standard manipulations we get

A~r1 ,r2 ,e,v!52~2p2!21Re$^gbb
11~r1 ,r1!gbb

22~r2 ,r2!

1gbb
12~r1 ,r2!gbb

21~r2 ,r1!&F

2^gbb
11~r1 ,r1!&F^gbb

22~r2 ,r2!&F%. ~6!

Here ^•••&F denotes the averaging with the action of t
supermatrixs modelF@Q#:

^•••&F5E DQ~••• !exp~2F@Q# !,

F@Q#52
pn

4 E dr Str@D~¹Q!212i ~v1 i0!LQ#, ~7!

whereD is the diffusion coefficient,Q5T21LT is a 434
supermatrix,L5diag(1,1,21,21), andT belongs to the su-
percoset spaceU(1,1u2)/U(1u1)3U(1u1). The symbol Str
denotes the supertrace defined as Str(B)5Bbb

112Bf f
11

1Bbb
222Bf f

22. The upper matrix indices correspond to t
retarded-advanced decomposition, while the lower indi
denote the boson-fermion one. The Green’s functiong in Eq.
~6! is the solution to the matrix equation

F2 i S e1
v

2
2Ĥ0D2

i

2
~v1 i0!L1Q/2tGg~r,r8!5d~r2r8!.

~8!

Expressing these functions through the matricesQ and tak-
ing into account Eq.~3!, we arrive at the following equation
valid in an arbitrary diffusive system:

2p2Fa~r1 ,r2 ,e!

D
d~v!1

b~r1 ,r2 ,e,v!

D2 R~v!G
52~pn!2Rê Qbb

11~r1!Qbb
22~r2!&F

2@ Im GR~r12r2!#
2Rê Qbb

12~r1!Qbb
21~r1!&F1~pn!2,

~9!

with GR being the impurity averaged retarded Green’s fu
tion. In particular, in the case of the 2D and 3D syste
GR is given by

GR~r!5H 2 inE
2p/2

p/2

duexp@~ ipFr2r /2l !cosu#, 2D

2pn~pFr !21exp@ ipFr2r /2l #, 3D,

where l is the mean free path. When deriving the seco
term on the right-hand side~rhs! of Eq. ~9!, we approximated
the fieldQ(r) in Eq. ~8! by a constant matrixQ(r1). This
approximation works both forr5ur12r2u! l ~due to slow
t-

s

-
,

d

variation of theQ field! and for r@ l @when the Green’s
function g(r1 ,r2) is exponentially small anyway, and th
second term on the rhs of Eq.~9! is negligibly small#.

The key point making further progress possible is that
term containing the single eigenfunction correlations on
lhs of Eq. ~9! is proportional tod(v), whereas the one de
pending on the correlations of two different eigenfunctions
regular atv50. Thus, separation of the expression on t
rhs of Eq.~9! into the singular@proportional tod(v)# and
regular parts allows one to obtain the quantitiesa(r1 ,r2) and
b(r1 ,r2 ,v).

Now we turn to the case of a metallic system in the we
localization regime. The corresponding small paramete
given by Eq.~19! below. For further purposes, we introduc
the functions

f 1~r1 ,r2!5P2~r1 ,r2!,

f 2~r1 ,r2!5~2V!21E dr@P2~r,r1!1P2~r,r2!#,

~10!

f 35V22E drdr8P2~r,r8!,

f 4~r1 ,r2!5V21E drP~r,r1!P~r,r2!.

Here the diffusion propagatorP is the solution to the diffu-
sion equation

2D¹2P~r1 ,r2!5~pn!21@d~r12r2!2V21# ~11!

with appropriate boundary conditions. We obtain

P~r1 ,r2!5~pn!21(
q

~Dq2!21fq~r1!fq~r2!, ~12!

with fq being the eigenfunction of the diffusion operat
corresponding to the eigenvalueDq2, qÞ0. The level corre-
lation function has the form@17#

R~v!512s22sin2s1 f 3sin
2s1O~g23!, ~13!

where a dimensionless parameters5pv/D is introduced.
The first two terms in Eq.~13! are given by RMT, while the
third one is the correction of orderg22 due to the diffusion
modes. Hereg52pEc /D is the dimensionless conductanc
with Ec being the Thouless energy.

The s model correlation functionŝQbb
11(r1)Qbb

22(r2)&F
and ^Qbb

12(r1)Qbb
21(r2)&F can be calculated for relatively low

frequenciesv!Ec with the use of a general method deve
oped in Refs.@17,9#, which allows one to take into accoun
spatial variations of the fieldQ. The results are obtained i
form of expansions ing21. First, we restrict ourselves to th
terms of orderg21. Then, the result for the first correlato
reads as

^Qbb
11~r1!Qbb

22~r2!&F52122i
exp~ is!sins

~s1 i0!2

22i
1

s1 i0
P~r1 ,r2!. ~14!
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The first two terms in Eq.~14! represent the result of th
so-called zero-mode approximation@14#, which takes into
account only the spatially constant configurations of the fi
Q(r), so that the functional integral overDQ(r) is reduced
to an integral over a single matrixQ. The last term is the
correction of orderg21. An analogous calculation for th
second correlator yields@13#

^Qbb
12~r1!Qbb

21~r2!&F522H i

s1 i0
1F11 i

exp~ is!sins

~s1 i0!2 G
3P~r1 ,r2!J . ~15!

Now, separating regular and singular parts on the rhs
tio
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Eq. ~9!, we obtain the following result for the autocorrela
tions of the same eigenfunction:

V2^uck~r1!ck~r2!u2&e215kd~r !@11P~r1 ,r1!#1P~r1 ,r2!,

~16!

and for the correlation of amplitudes of two different eige
functions

V2^uck~r1!c l~r2!u2&e,v215kd~r !P~r1 ,r1!, kÞ l .
~17!

Here the functionkd(r ) is defined as
kd~r !5~pn!22@ ImGR~r!#25e2r / lH 1, 2D, pFr!1

2~ppFr !21cos2~pFr2p/4!, 2D, pFr@1

~pFr !22sin2pFr , 3D.
re-

co-
is
ld

nce
In particular, forr15r2 we have

V2^uck~r!c lr!u2&e,v215dkl1~11dkl!P~r,r!. ~18!

Note that the result~16! for r15r2 is the inverse participation
ratio previously obtained in Ref.@9#, while that for arbitrary
spatial separation was found in the zero-mode approxima
(g5`) in Ref. @11#.

Equations~17! and ~18! show that the correlations be
tween different eigenfunctions are relatively small in t
weak disorder regime. Indeed, they are proportional to
small parameterP(r,r), which is equal in the case of 2D
geometry to (L is the size of the system!

P~r,r!5~pg!21lnL/ l , 2D. ~19!

For a quasi-1D wire or strip of the lengthL,

P~r ,r !5
2

gF161B2S rL D G , 0<r<L, ~20!

whereB2(x)5x22x11/6 is the Bernoulli polynomial@18#.
The correlations are enhanced by disorder; when the sys
approaches the strong localization regime, the relative m
nitude of correlations,P(r,r), becomes the quantity of orde
of unity.

An inspection of Eqs.~16! and ~17! shows that while the
correlations of amplitude of the same wave function surv
for the large separation between the points,r@ l , and are
proportional tog21, the correlations of two different wav
functions decay exponentially for the distances larger t
the mean free pathl . This is, however, an artifact of th
g21 approximation, and the investigation of the correspo
ing tails requires the extension of the above calculation to
n

e

m
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e
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e

terms proportional tog22. We find that the correlator
^Qbb

11Qbb
22&F gets the following correction:

d^Qbb
11Qbb

22&F52 f 112 f 41exp~2is! f 3

22i
exp~2is!

s1 i0
~ f 22 f 3!

2
exp~2is!21

2~s1 i0!2
~ f 124 f 213 f 322 f 4!.

~21!

Consequently, we obtain the following results for the cor
lations of different (kÞ l ) eigenfunctions atr. l :

V2^uck~r1!c l~r2!u2&e,v215
1

2
~ f 12 f 322 f 4!12~ f 22 f 3!

3S sin2ss2
2
sin2s

2s D
3S 12

sin2s

s2 D 21

. ~22!

As it should be expected, the double integral over both
ordinates of this correlation function is equal to zero. Th
property is just the normalization condition and should ho
in arbitrary order of expansion ing21.

The quantitiesf 2, f 3, and f 4 are proportional tog
22, with

some prefactors of order unity@17#. On the other hand,f 1 in
2D and 3D geometry depends essentially on the dista
r5ur12r2u. In particular, forl!r!L we find



-

al

or

s.

r

nd
mb

in
or-
ent
r-

ni-

ct

k

the

ich
Al-

raeli

55 6517CORRELATIONS OF EIGENFUNCTIONS IN . . .
f 1~r1 ,r2!5P2~r1 ,r2!'H 1

~pg!2
ln2

L

r
, 2D

1

~4p2nDr !2
, 3D.

Thus, forl,r!L, the contributions proportional tof 1 domi-
nate in Eq.~22!, and we get

V2^uck~r1!c l~r2!u2&e,v215
1

2
P2~r1 ,r2!, kÞ l . ~23!

On the other hand, for the case of quasi-1D geometry~as
well as in 2D and 3D forr;L), all quantitiesf 1, f 2, f 3, and
f 4 are of order of 1/g2. Thus, the correlator~22! acquires a
nontrivial frequency dependence on a scalev;D described
by the second term on the rhs of Eq.~22!. In particular, in the
quasi-1D case

f 22 f 352
2

3g2FB4S r 1L D1B4S r 2L D G , ~24!

whereB4(x)5x422x31x221/30. Therefore, we find a cou
pling of the eigenfunction and eigenvalue statistics.

Another correlation function, generally used for the c
culation of the linear response of the system,

g~r1 ,r2 ,e,v!5^ck* ~r1!c l~r1!ck~r2!c l* ~r2!&e,v , kÞ l ,

can be calculated in a similar way~cf. @13#!. Starting from
the quantity

B~r1 ,r2 ,e,v!5K (
k,l

ck* ~r1!c l~r1!ck~r2!c l* ~r2!

3d~e2ek!d~e1v2e l !L
2K (

k
ck* ~r1!ck~r2!d~e2ek!L

3K (
l

c l~r1!c l* ~r2!d~e1v2e l !L , ~25!

and repeating the derivation that led us to Eq.~9!, we get
another identity:

2p2Fa~r1 ,r2 ,e!

D
d~v!1

g~r1 ,r2 ,e,v!

D2 R~v!G
52~pn!2Re$^Qbb

12~r1!Qbb
21~r2!&F

1kd~r !^Qbb
11~r1!Qbb

22~r1!&F2kd~r !%, ~26!

Taking into account Eqs.~14! and ~15!, and separating the
rhs into the regular and singular parts, we recover Eq.~16!
and obtain
ett
-

V2^ck* ~r1!c l~r1!ck~r2!c l* ~r2!&e,v5kd~r !1P~r1 ,r2!,

kÞ l . ~27!

As was mentioned, the above derivation is valid f
v!Ec . In order to obtain the results in the rangev*Ec one
can calculate thes model correlation functions entering Eq
~9! and ~26! by means of the perturbation theory@19#. We
find then forkÞ l

V2^uck~r1!c l~r2!u2&e,v511ReH kd~r !Pv~r1 ,r2!

1
1

2FPv
2 ~r1 ,r2!

2
1

V2E drdr8Pv
2 ~r,r8!G J ,

V2^ck* ~r1!c l~r1!ck~r2!c l* ~r2!&e,v5kd~r !1RePv~r1 ,r2!,

~28!

wherePv(r1 ,r2) is the finite-frequency diffusion propagato

Pv~r1 ,r2!5~pn!21(
q

fq~r1!fq~r2!

Dq22 iv
, ~29!

and the summation in Eq.~29! now includesq50.
Finally, we discuss the relation between our results a

experiments carried out on quantum dots in the Coulo
blockade regime. Our theory predicts only weak@;P(r,r)#
correlations of the amplitudes of different wave functions
the same point, which implies weak correlations of neighb
ing conductance peak heights. Indeed, this is in agreem
with the experiments@20,4#. On the other hand, strong co
relations of amplitudes were observed recently@5#. In prin-
ciple, one could imagine that the dot was far from the u
versal~RMT! regime, so that the parameterP(r,r) was not
small. However, this would be in contradiction with the fa
that the total distribution of peak heights in Ref.@5# was well
described by the RMT formulas@1#, since the corrections to
the distribution ofuc2(r)u ~and consequently to that of pea
heights! are proportional to the same parameterP(r,r) @9#.
Possibly, variation of the peak heights in the experiment@5#
may have another source on top of the fluctuations of
eigenfunctions.

We are grateful to Charlie Marcus for a discussion wh
stimulated this research. The work was supported by the
exander von Humboldt Foundation~Y.M.B.!, SFB195 der
Deutschen Forschungsgemeinschaft, and the German-Is
Foundation~A.D.M.!.
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